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Abstract. Schrodinger pointed out the paradoxical fact that a skilful experimenter can 
steer, without any interaction, a distant particle (that is correlated with a nearby one on 
account of past interactions) into any of a wide set of states. He gave a sufficient condition 
for the range of this distant steering. In this paper a necessary and sufficient condition, 
enlarging Schrodinger’s set in some cases, is derived. The significance of Schrodinger’s 
approach to quantum non-separability (i.e. to quantum distant correlations) is discussed, 
and our  previous work along these lines is put into relation with distant steering. 

1. Introduction 

We outline our view on two distant particles in a non-separable state, basing it on 
numerous real experiments performed between 1972 and 1982 (Clauser and Shimony 
1978, Aspect eta1 1982a,b). Most of these experiments were done with pairs of 
correlated photons emitted in a cascade de-excitation in opposite directions with 
distinct wavelengths A ,  and A 2  and with a time separation of a few nanoseconds. This 
was the first stage of preparation. In the second stage, one used filters (up to 1 5 m  
apart) for A ,  and A 2 ,  which projected out the part of the two-photon wavefunction 
that corresponded to passing the filters and entering the macroscopic volumes V,  and 
V,. In each of these, an analyser and a detector (constituting together an apparatus 
A ,  or A,)  measured the linear polarisation of the incident photon. 

The state vector of the two-photon system after the first stage of preparation 
factorises into a correlated (two-photon) spatial factor and a correlated (two-photon) 
polarisation factor x12.  The second stage of preparation destroys the spatial correlation, 
i.e. the two-photon spatial factor further factorises. This makes the photons distant 
in the sense that the first is in the volume V, and the second in the (distant) volume 
V2. At the same time, the two-photon polarisation correlation remains unchanged. 
As a consequence, the entire state vector 4,, (the spatial degrees of freedom of both 
photons included) is correlated. 

In order to sum up what makes two particles distant, we point out that: 
(i)  there exist two non-overlapping spatial volumes V,  and V2 such that particle 1 

( i i )  the particles do not interact; 
(iii) any apparatus A I  in VI performing measurements on particle 1 does not 

interact with particle 2, and symmetrically (interchanging 1 and 2). 
In all the experiments mentioned one performed coincidence measurements (with 

apparatuses A ,  and A , )  of polarisation observables 0, and 02, and simultaneously 
of localisation in VI and V2, which is obviously compatible with polarisation. 

is in V,  and particle 2 in V, ;  
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The correlated two-photon polarisation factor x12 is, in the experiments of Aspect 
et al (1982a, b), of the form: 

where x and y refer to linear polarisation. 

and not of the corresponding separable state 
Quantum non-separability is implied by the validity of xlz  for the system at issue, 

p,2= 2-’(lx,)(x,IoIx2~(x2l+lY,~(Y,lolY2)(Y2l). 

In other words, these two states are experimentally distinguishable. (For a historical 
view see appendix 1 of Clauser and Shimony (19781.) 

To illustrate one way of distinguishing experimentally ,y12 from p l , ,  we make use 
of Moldauer’s 2-type observable (Moldauer 1972), which he devised for this purpose: 
one measures a two-photon observable that does not commute either with lx,)(x,lC3 I ,  
or with Z,01x2)(x21. For example, such an observable is 

/x’,)(xllO Ixxx;l 

and the angle between x and x’ is sharp. It is easy to convince oneself that this 
observable has different probabilities in the states xlz and p12 due to interference terms. 

Nowadays, when experiments have proved (Aspect et a1 1982a, b) the reality of 
quantum non-separability at macroscopic distances (about 15 m), we know that local 
hidden variables in the sense of Einstein et al (1935) and Bell (1964) are discarded. 
We believe that Schrodinger’s approach (1935, 1936) to the investigation of quantum 
non-separability deserves reconsideration as a research programme: a more elaborate 
and detailed quantum theory of distant correlations is desirable. 

This paper, as well as our previous related work (see 9 7), represent efforts to make 
a contribution along these lines. 

2. Distant steering through generalised Fourier coefficients 

Let 4,, E H ,  0 H, be a pure state of two distant particles that interacted in the past, 
or of two distant photons that emerged from a cascade de-excitation or a positronium 
annihilation. (The Hilbert spaces HI and H, contain both spatial and internal degrees 
of freedom.) 

The fact that the particles interacted in the past (or the analogous reason for 
photons) causes 4,2 to be non-factorisable, i.e. one cannot write 

1412)) = Iv)l+) IP) E HI I + ) €  H2. 

But since c$,, is an element of HI 0 H2, it equals a finite or an infinite sum of factorisable 
(i.e. uncorrelated) state vectors: 

I4l,))=C Ipt)I+i)* 
I 

This decomposition is non-unique. In the physical situation described above, it is 
useful to expand 4,, in an orthonormal basis { p i  : i = 1,2, . . .} in H I ,  preferably in an 
eigenbasis of the observable 0, measured by the apparatus A , .  
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Lemma 1 .  Let C b 1 2  E HI 0 H 2 ,  and let { cp, : i = 1,2, . . .} be an orthonormal basis of H I .  
Then there exists a unique expansion 

where 

are elements in H 2  obtained by a partial scalar product, and may be called generalised 
Fourier coeflcients. If, furthermore, the vectors cpx are eigenvectors of a complete 
observable 0,, i.e. 

0, =c ajlcpJ(cptl i # i ‘ J a ,  # a, .  (2) 

and if 0,691, is measured in the state d I2 ,  then 
(i) ( $ 1 1 $ 1 )  is the probability of the result a , ,  
(ii) lcp,)[+,)/(+,[$,}”2 is the state of the two-particle system after the measurement 

has given the result a , .  

Proof: This is straightforward and can be found in Herbut and VujiEiC (1976), 
theorem 1. 

Remark 1 .  Statements (i) and (ii) of lemma 1 are valid even more generally: they 
apply to any, even to an incomplete, observable 0, as long as cp, is its eigenvector 
corresponding to a non-degenerate eigenvalue a , .  In particular, they apply to the 
projector 0, = lcpl)(cpll. 

From the point of view of the measuring apparatus A ,  that measures O, ,  particle 1 is 
nearby and particle 2 is distant. Neither particle 1 nor apparatus A ,  interact with the 
distant particle. Nevertheless, at the end of the measurement with the result a, the 
distant particle is in the state ~$,)/(t,b,~$l)”2. This is what we call, following Schrodinger 
(1935, 1936), distant steering. A skilful experimenter can, with a suitable selection of 
the measurement (e.g. of 0, = Icp,)((p,I) on the nearby particle, steer the distant particle, 
with a certain probability, into the preselected states l $ 8 ) / ( $ , l $ l ) ” 2 .  Varying lcp,)((p,l, 

one can thus obtain any one of a number of different states of the distant particle. 
One wonders how wide the set of such possible states is. 

Schrodinger (1936) gave a proof that the distant particle 2 can be steered (with 
some probability) into any preselected state from the range R ( p 2 )  of the reduced 

statistical operator p2 = Tr,~412)(412~ by bringing the nearby particle 1 into some 
suitable state. Schrodinger considered this result as a genuine paradox of quantum 
mechanics. It was his reaction to the famous Einstein-Podolsky-Rosen (1935) argu- 
ment to prove incompleteness of quantum mechanics. Schrodinger’s paradox consists 
of the fact that the state of the distant particle depends on the selection of the observable 
0, measured on the nearby particle. This is the essential physical feature of quantum 
non-separability (d’Espagnat 1976). The paradox applies to any correlated 4,2  (i.e. 
one that is not factorisable into states of the particles), and not only to a special class 
of so-called EPR states (VujiEiC and Herbut 1984). We return to this point in § 7. 

def 

It is of interest to give a tightening up of Schrodinger’s result. 
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3. Which states can be achieved by distant steering? 

It follows from lemma l(ii) that the generalised Fourier coefficient Jl i ,  when normalised, 
is the state in which the distant particle finds itself in distant steering. The partial 
scalar product with the help of which Jli is evaluated (cf lemma 1 )  is in fact an antilinear 
operator A, that maps H I  into H 2  (Herbut and VujiEiC: 1976). Its polar factorisation 
gives (see (34) in the mentioned reference): 

Aa = UaQl (3)  

where p2 is the reduced statistical operator describing the state of the distant particle 
before the steering (d’Espagnat 1976), U, is the antiunitary correlation operator 

mapping the range R ( p l )  of p1 = Tr21412)(4121 onto R ( p 2 ) ,  and, finally, Q1 is the 
range projector of p1 . Since 

der 

lJli)=Aalqi)=p:’2U,Q,lqi) (4) 

it is obvious that Jli necessarily belongs to the range of pi ’2.  What is more, we prove 
the following main result of this work. 

Theorem. Any state vector from R(p:12), and only such states, can be reached by 
distant steering. 

ProoJ: Let Jl be an arbitrary state vector from R(p:’2).  Then there exists a vector 
4 E H2 such that Jl = P:’~I,&. Denoting by Q2 the range projector of p 2 ,  one can write 
Jl = p:/’Q,& because and p2 have one and the same range projector (cf lemma 2 
below). Next we define 

Iq) Er U;’QzlG) E HI. ( 5 )  

Since obviously (919) # 0, the direct measurement of the projector Ip)(cpl/(cplcp) pro- 
duces the state Jl by distant steering. The rest is obvious from (4). 

4. Are there any states that Schrodinger did not take into account? 

To see what sort of tightening we are dealing with, we prove that sometimes R ( p )  is 
a proper subset of R(p’12).  

Let p be any statistical operator (0 Q p, Tr p = 1) in a complex and separable Hilbert 
space H. Let 

M 

be a spectral form of p. (It should be remembered that p has a purely discrete spectrum, 
and that each of its positive eigenvalues r, has a finite multiplicity M , ,  cf Reed and 
Simon (1972), theorem VI.5 and VI.21.) 

We make use of two linear manifolds in addition to R ( p )  and R(p’12).  By L we 
denote the set of all finite linear combinations of the eigenvectors from (6), and by 
the subspace spanned by the same eigenvectors 

I  m , = l  I  m , = l  
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Lemma 2. One has always 

L G  R ( p )  E R ( p l ” )  G L. ( 7 )  

If p has no more than a Jinite number of distinct positive eigenvalues r , ,  then the four 
linear manifolds in ( 7 )  coincide. If the number of all positive eigenvalues is injnite, 
then the four linear manifolds are all distinct: 

(8) L c  R ( p )  c R ( p ’ ” )  c L 
where ‘c ’ denotes the proper-subset relation. 

def 
one has R ( p )  E R ( p ” * ) .  Finally, let a,,,,,, = ( i ,  m,la).  Then, utilising the common range 
projector I;, I;?= I I i, m,)(  i ,  m, I of p and p ”*, one has: 

Y 
p”21a) =c c P1’21i, m,>(i, m,la) 

I m , = l  

Y 
= a,.,,,, r:’*li,  m , )  E L. 

I m , = l  

This entails R ( p ’ / * )  c_ t. 
In case L is finite dimensional, L = R ( p )  = R ( p 1 1 2 )  = L obviously follows from 

L = and (7).  
Henceforth, let L be infinite dimensional. On account of Tr p = C, E,,,, r, = 1, we 

know that la) = I;, E,,,, r f I2 / i ,  m , )  is an element of L. On the other hand, arguing 
ab contrario, we assume that there exists a vector lb) E H,  such that la) = p1 /21b) .  
Substituting here both 

def 

and the above expansion of la),  one obtains 

leading to P,,,,, = 1, Vi ,  m, .  Since there is an infinite number of i, m, values, the norm 
of lb) is infinite. Hence \ b ) e  H, \a )<  R(p”*),  and hence R(p112)f  E. 

Taking la) = I;, I;,,, rf’21i, m , )  as in the preceding paragraph, we consider p ” * l a )  
which is an element of R ( p ’ ” ) .  We assume that 3 ( b ) ~ H  such that p1’21a)=p lb ) .  
Performing scalar multiplication with ( i ,  m,I, we obtain r , ( i ,  m,lb) = r:’zr1’2.  This again 

d e i  

implies ( i ,  m,Jb)  = 1 for all i ,  m, contradicting Ib) E If. Hence, p ” * I a ) E  R ( p ) ,  and R ( p )  # 
R ( p “ ’ ) .  
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def 
Finally, let us renumber the pairs i, mi as n = 1,2 , .  . . . We take I C )  = n - l l n )  E 

H,  and 

n = l  

( ‘ i n ’  is the ‘i’ value corresponding to ‘ n ’  in the above renumbering). Hence, L f  R ( p ) .  

Thus, the second inequality in (8)  makes it clear that in the infinite-dimensional case 
there do exist states (belonging to R(p”’ ) \R(p ) )  that can be reached by distant steering 
and that lie outside Schrodinger’s result. 

If one wants to achieve in practice distant steering of particle 2 into any chosen 
state l $ ) ~ R ( p : ’ * )  (the best one can do according to our tightened result), one can 
define 16) E H2 by 19) = pi ’2  1 G). Expanding 

M ,  

I4)=C C . L . m , I G i ) + I J ) ‘  
f m , = l  

(cf (6) for p = p J ,  / G ) E  R ( p 2 ) ’  (the null space of p2) ,  one can easily see that it is 
sufficient to bring the nearby particle 1 into the state Ip)/(plp)”*, where 

1 / 2  - li, m,) = r;  
It is important to point out that distant steering of particle 2 into the state I$) need 

not be performed by predictive measurement of the projector lp)(pl/(plp). It can be 
done by any measurement (predictive or retrospective) of the same projector on the 
nearby particle (cf 6(B) in Herbut and VujiZiC (1976)). 

(i,m31412) and r, satisfy (6) for p = p I .  

5. Can an incomplete measurement distantly steer outside R(P: ’~)?  

So far we have discussed distant steering assuming that one measures a ray projector 
Ip)(pl on the nearby particle (cf remark 1) .  One wonders if distant steering can lead 
to some state of the distant particle outside R(p :” )  as a result of a measurement of a 
more general projector 

=c  l ( P k ) ( ( P k l  
k 

(e.g. an eigenprojector of an incomplete observable) on the nearby particle. 

Proposition 1 .  The state of the distant particle after a measurement of a general projector 
PI on the nearby particle is described by a statistical operator p i  that is a mixture of 
pure states from ~ ( p : ” )  (cf (3)). 

Prooj As is well known (Messiah 1961, p 298), the state of the two-particle system 
after the measurement of PI is 
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def 
where p = ( # I , ~ ~ ( P , O Z ~ ) ~ ~ , ~ ) .  The state of the distant particle is the reduced statistical 
operator 

def 
p i  = P-’ Trl[(P,OZ~)i#Ilr)(#Il2l(P10~2)l 

= P-‘ Tr, [ ( O 1,) I 4 d  I .  
The last step is due to the fact that PIOZz commutes with any operator from 

HI 0 H2 under Tr, . Further, 

The claim of proposition 1 is relevant also for a finite-dimensional range when 
R(p:” )  = R ( p , )  (cf lemma 2 ) .  

6. How does the state of the distant particle change under any interaction of the 
nearby particle with a third system? 

We assume that we have a two-particle system in the state #Il2 as before. Prior to any 
measurement, we couple dynamically only the close particle 1 to some physical system 
0 in the state two) E H,, (wolwo> = Tr, ~wo)(wo~ = 1. One may ask how the distant particle 
is influenced by this coupling. 

Proposition 2. The state of the distant particle changes in time by its separate evolution 
operator independently of the interaction between the nearby particle 1 and system 0. 

Proof: The described dynamical coupling leads (in a certain time interval) to the 
following change of the state of the composite system O +  1 + 2  in H o O H , 0 H 2 :  

l ~ o ) I d ’ 1 2 ) ’  (U010 U*)lwo)l4l2). 

The unitary evolution operator U,, includes arbitrary interaction between systems 0 
and 1, whereas U, is the separate evolution operator of the distant particle. The 
reduced statistical operator of particle 2 in the final state is 

Tro,( U010 ~ 2 ~ ~ l ~ o ~ ~ ~ o l o l 4 l 2 ~ ~ # I 1 2 1 ~ ~  UdlO U:) 
= ~ * ~ ~ ~ a l ~ l ~ o ~ ~ ~ ~ l 0 l 4 l 2 ~ ~ d ’ l ~ l ~ l ~ ~  = U*P*U5. 

Thus, the distant particle evolves as if there were no interaction between the nearby 
particle and system 0. This conclusion is valid also when system 0 is in a mixed state 
pa because TrapO= 1 (and this is all that is utilised in the proof). 
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7. Concluding remarks 

Schrodinger was perplexed by the paradoxical aspects of quantum correlations. He 
doubted their physical reality and he suggested a mechanism for their disappearance 
in the framework of purely quantum mechanical ideas (cf appendix 1 in Clauser and 
Shimony (1978)). This so-called Schrodinger hypothesis assumed spontaneous (i.e. 
without measurement) wiping out of phase relations in 412 after the spatial separation 
of particles 1 and 2 ,  and conversion of 4,, into a mixture of simple product states. 
This hypothesis was experimentally disproved (Hooker 1972), which means that the 
disturbing paradox of the quantum correlations remains an unresolved problem in 
quantum mechanics. 

Einstein et a1 (1935), on the other hand, were motivated by their belief that quantum 
mechanics was incomplete, i.e. that there existed local hidden variables. This gave 
rise to a great upsurge of theoretical and experimental research (Clauser and Shimony 
1978) that ended in a complete confirmation of quantum mechanics. In the words of 
Peierls (1985), the situation can be compared to virtual work that confirms stability: 
‘. . . we have gained confirmation of the stability of quantum theory by considering an 
argument which looks like upsetting it and the theory is still there’. 

We expect that giving up the idea of local hidden variables should return the focus 
of interest to quantum mechanical aspects of distant correlations, i.e. to distant steering. 
We think it is necessary to analyse distant steering both theoretically and experimentally. 

With this purpose in mind we have studied the most important special cases of 
distant steering in previous work. 

(i)  Distant measurement, which is distant steering in the case when the observable 
0, measured on the nearby particle is compatible with the state of this particle, i.e. 
[ O , ,  p , ]  = 0. In this case distant steering amounts to a measurement (of the twin 
observable 0,) on the distant particle (see Herbut and VujiEiC 1976). 

( i i )  An Einstein-Podolosky-Rosen state 4FTR allows the distant measurement of 
any one of two incompatible twin observables 0, and 04. Such a state is characterised 
by the existence of at least one degenerate positive eigenvalue of pFPR (see VujiEiC 
and Herbut 1984). 

(iii) The Pauli non-local correlations between two identical distant particles have 
been shown to be inoperative in distant correlations, i.e. to give no contribution to 
distant steering (cf Herbut and VujiEiC 1985, 1987). 
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